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The LOTUS Project 
LOTUS is a project funded by DG Environment under the European Union Horizon 2020 Research and 

Innovation Programme and by the Indian Government. It brings together EU and Indian prominent 

organisations with the aim to co-create, co-design and co-develop innovative robust affordable low-

cost sensing solutions for enhancing India’s water and sanitation challenges in both rural and urban 

area. 

The LOTUS solution is based on an innovative sensor and includes tailor-made decision support to 

exploit the capabilities of the sensor as well as a specific approach to co-creation. LOTUS aims to be 

co-designed and co-produced in India, and have a wide, diverse and lasting impact for the water sector 

in India due to intense collaborations with commercial and academic partners in India. 

Based on the low-cost sensor platform, solutions for the early detection of water quality problems, 

decision support for countermeasures and optimal management of drinking and irrigation water 

systems, tailored on the functionalities of the new sensor, will be developed and integrated with the 

existing monitoring and control systems. 

This sensor will be deployed in five different use cases: in a water-network, on ground-water, in 

irrigation, in an algae-based waste water treatment plant and in water tankers. The packaging of the 

sensor, as well as the online and offline software tools will be tailored for each of the use cases. These 

last will enable to test the sensors and improve them iteratively. 

The project is based on co-creation, co-design and co-production between the different partners. 

Therefore, an important stakeholder engagement process will be implemented during the project 

lifetime and involve relevant stakeholders, including local authorities, water users and social 

communities, and will consider possible gender differences in the use and need of water. Broad 

outreach activities will take place both in India and in Europe, therefore contributing to LOTUS impact 

maximisation. 

The further development and exploitation (beyond the project) of the novel sensor platform will be 

done in cooperation with the Indian partners. This will create a level playing field for European and 

Indian industries and SMEs working in the water quality area.  
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1 Executive Summary 
This report outlines the various modelling tools and functionalities that have been developed for real-

time operational management of water systems, where LOTUS sensors will be deployed. The software 

described here has been developed for assistance in the optimal operation of water systems of each 

use case in real time, or near real time (i.e. response times between minutes to few hours). To this 

end, a brief summary of developed modelling and simulation tools is provided whereever applicable 

in each use case. WP 4 focuses on the development of models/algorithms for simulating and real-time 

management of water systems, i.e. dynamically reacting to changing situations, demands, quality 

problems, failures, leakages, etc. while also ensuring the suitability of the tools with the use case 

instalments. The  collection of technical requirements for the execution and integration of these real-

time modelling and optimization tools with the LOTUS platform was already presented in last 

deliverable (D4.1), with specifics to each use case study.  

The described framework of real-time modelling and simulation tools will aid the teams in decisions 

on subsequent steps for demonsration of these real time tools with the state-of-art platform where 

data will be collected, processed in real-time with these simulation/optimization tools and receives 

feedback for deciding optimal water systems management strategy.  
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2 Overview 

2.1 List of real-time tools for all use cases  
This section provides a brief description of various tools and functionalities for real-time operational 

management of the use case water systems, where LOTUS sensors will be deployed. 

2.1.1 Water Distribution Network Guwahati 

1. Water quantity (pressure, flow) monitoring and anomaly detection in urban water 

distribution systems 

The main objective of this tool is the real-time detection of anomalies and early warning for 

quantitative (flow and pressure) disturbances in the Guwahati piped water distribution network 

(WDN). These disturbances may occur after sudden physical damage to network components, due to 

e.g. pipe bursts (natural, accidental or intentional), pipeline leakages, component malfunctions (e.g. 

pumps, valves) etc. The detection will be based on pressure and flow sensors deployed in the network 

(existing sensors or LOTUS sensors) that are linked to the SCADA system. This functionality for real-

time system operational management will involve models for event recognition (burst and leakage), 

leakage location identification and a holistic approach to leakage management by combining several 

types of alerts and approaches in a single Decision Support Platform to be developed in WP5. 

Following software tools have been developed for this task and a brief description of algorithms and 

methodology involved in each tool is described in subsequent use case chapter : 

a. EPANET based Leak Detection Tool (ELD) : This tool helps in detecting pipe burst events using 

pressure and/or flow sensors placed strategically in the water distribution system and a 

calibrated EPANET hydraulic model. 

b. EPANET based Leak Localization Tool (ELL) : Subsequent to the detection of a burst event of 

possibilty from above tool, this tool will pinpoint the exact location of a pipe burst using a 

machine learning (ML) model. 

 

2. Water quality monitoring and anomaly detection 

While the former tool focused on events related to water quantity, this tool will involve water quality 

monitoring in the Guwahati WDN and associated contamination anomaly detection functionalities. For 

the Guwahati WDN use case, this water quality monitoring tool will be based on and combined with 

the sensor placement module developed in WP3. The water quality parameters which will be 

considered in the tools will be described in a report from WP3. 
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3. Real-time mitigation measures for water quantity and quality alerts 

Once a valid contamination alert (based on flow/ pressure/ water quality disturbance) has been 

generated from the anomaly detection tools, the real-time mitigation support tools act to assist water 

utility operators in deciding and optimizing mitigation plans for clean water supply. Further, the real-

time intervention measures will also cover a control strategy for optimal disinfectant dosage to ensure 

that disinfectant levels are high enough to minimize microbial contaminant re-growth, while 

minimizing disinfectant by products formation risk.  

Following software tools have been developed for this task and a brief description of algorithms and 

methodology involved in each tool is described in the text in corresponding use case chapter : 

a. EPANET Leak Detection (ELD) and Leak Location (ELL): models to identify the occurrence of a 

leak (ELD) and the locations of valves (ELL) that need to be closed to isolate the burst pipe, 

described in section 3.1.1. and 3.1.2 respectively. This tool receives as input the ID of the burst 

pipe and produces the IDs of the valves to be closed. 

b. Coordinated Decentralization-based Optimization of Disinfectant Dosing in Large-scale 

Water Distribution Networks (CODD): This tool is for responding to a microbial water quality 

contamination event alert, where an optimal response is predicted for disinfectant dosage  at 

several booster stations in the network to control the further microbial population growth and 

restoration of water quality to acceptable limits in the contamination zone.  

 

4. Real-time alerts to the public 

These tools will involve modules for alerting the public, using mobile phone applications (apps). It 

comprises the design and development of the apps, as well as the system architecture of delivery to 

the public. The generic module will be adapted to the needs of each specific use case, with specifically 

designed displays and screens, in Indian languages. 

2.1.2 Tanker-based water distribution network 

1. Short-term planning and operational management in real-time for tanker-based water 

distribution systems 

The objective of this tool is the real-time monitoring and management of tanker-based distribution 

systems. This includes, on the lower level, the monitoring of water quality based on data from LOTUS 

sensor deployed at the water sources, tankers and consumption points, and on the systems level the 

planning of treatment plant operations, logistic optimization, and scheduling of tankers in adaption to 

the dynamic demand of costumers. 

Following software tools have been developed for this task and a brief description of algorithms and 

methodology involved in each tool is described in the text in corresponding use case chapter: 
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a. Tanker water Scheduling and Planning Framework (IITB-TSP): This tool find the optimal 

tanker movement schedule (from sources to treatment plants to consumers) while minimizing 

the total operating cost for timely delivery of water to consumers and sustainable use of 

available water resources. The optimization tool rigorously incorporates major constraints 

related to operational nuances of different components (viz. water sources, treatment 

facilities, and consumers) in tanker-based water supply systems, various limitations of water 

treatment, transit time, and distribution aspects to provide the optimal target tanker schedule 

that is achievable in representative applications. 

 

b. Stochastic Optimization Model for Uncertain Demands in Tanker water supply systems in 

Urban Areas (SUD): This tool involves a stochastic optimization framework for efficient 

planning and operations of tanker water supply systems exhibiting consumer water demand 

uncertainty. 

2.1.3 Irrigation systems 

1. Real-time optimal operation of irrigation systems based on quantity and quality monitoring 

The objective of the decision support tools is to assist in the optimal use of water and in the optimal 

addition of fertilizer to the water for irrigation. The goals are to provide a continuous flow of water of 

sufficient quantity and to provide the right amount of fertilizer for optimum growth. This includes 

taking account of uncertainties (about the future inflow of water, in particular due to rainfall) for the 

informed decision making to manage the storage and retrieval of water. 

Tool under development: Advisory system for optimum irrigation and fertigation 

2.1.4 Groundwater and river water monitoring 

1. Weather prediction tool for ground water and river water quality modelling  

This tool will be concerned with time series based modelling of weather conditions to predict 

precipitation in the catchment areas of the river as well as other and ground water sources. Based on 

these prediction of the precipitation, in conjunction with other CFD/ hydrology-based models, the 

quality of the water stream will be predicted. 

2.1.5  Wastewater treatment 

1. Monitoring and control of algae-based wastewater treatment 

The information about the quality of the outflow of the experimental algae-based waste-water 

treatment plant provided by the LOTUS sensor will be used for model-based monitoring and control 
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of the operation of the plant with the goal of long-term stability, meeting of water quality standards 

and assuring the usability of the algae. This will be based upon the investigation of the observability of 

the process from different sensor information. A state estimator will be developed. Based on this 

information, strategies for the control of the algae based treatment will be designed and tested in 

simulations. 

Tool under development: Model-based advisory for optimal operation of algae-based waste-water 

treatment 

2. Control of activated sludge wastewater treatment processes 

Algorithms are developed that employ the information provided by the LOTUS sensor about the 

concentrations of ammonia and nitrate in different basins of a conventional wastewater treatment 

plant to improve the quality of the effluent water and reduce the energy consumption of the plant. 

Tool under development: Model-based control algorithm for activated sludge wastewater treatment 
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3  Guwahati Water Distribution 

Network  

3.1 Subtask 4.2.1  
Water quantity (pressure, flow) monitoring and anomaly detection in urban water distribution 

systems 

This sub task addresses the real-time detection of flow and pressure disturbances in urban water 

distribution systems. The functionalities involved in the tool comprise anomaly detection and early 

warning for quantitative (flow and pressure) disturbances in water supply and distribution systems 

(WDS) in real time, occurring after sudden physical damage to network components: pipe bursts 

(natural, accidental or intentional), leakage alerts, component malfunctions (e.g. pumps). The 

detection will be based on the new LOTUS sensors and will also include information from existing 

pressure and flow sensors in the use case network.  The leakage location models involved in this 

subtask exist for event (burst and leakage) recognition system management with UNEXE and its 

integration in LOTUS decision support platform is in progress, but a bit delayed due to pending 

deployment of LOTUS sensors in the network. The following section provides an overview of the leak 

detection and localization models developed. 

3.1.1  EPANET Leak Detection (ELD) 

The EPANET Leak Detection model focuses on detecting pipe burst events using pressure and/or flow 

sensors within a water distribution system and a calibrated EPANET hydraulic model. The OWA EPANET 

modelling software was selected since it is an open-source software, that is common within the 

industry, is able to perform pressure driven analysis (assisting with pipe break analysis) and is 

integrated into python package to assist with coding (Open Water Analytics, 2021).  

The EPANET Leak Detection model must be calibrated for each specific water distribution system 

analyzed. Calibration of this model is performed by simulating leak and non-leak scenarios, 

optimization leak detection thresholds using an calibrated EPANET hydraulic model, calculating the 

exponential weighted moving average (EWMA) for sensor readings, and updating anomaly service and 

visualization for each sensor based on the calculated EWMA value. The entire EPANET Anomaly 

Detection methodological approach is highlighted below in Figure 1. 
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Figure 1: EPANET Anomaly Detection Schematic 

The EWMA statistical method was chosen for the leak detection model as it has been shown to 

outperform many of the other methods in detecting anomalies within water distribution systems (Jung 

et al., 2015).  

The EWMA equation is described below, with a representing the time weighted factor: 

𝑒𝑤𝑚𝑎𝑖,𝑡 = 𝑎 ∗ 𝑧𝑖,𝑡 + (1 − 𝑎) ∗  𝑒𝑤𝑚𝑎𝑖,𝑡−1  

where, ewmai,t is the exponentially weighted moving average at time t for the ith sensor. Note at t=0, 

ewmai,0 = 0.  

The leak detection threshold for the EWMA is determined through the following equation:  

𝐸𝑊𝑀𝐴 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = +/− 𝐿 ∗ (
𝑎

2−𝑎
)0.5  
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Where L is a set failure threshold. If the absolute value of ewmai,t is greater than the EWMA threshold, 

a leak is detected.  

A grid search optimization approach is employed to select optimal a and L parameters that maximize 

detection rate, while minimizing the false positive rate. Specifically, the optimized performance 

indicator is: 

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒+ (1−𝐹𝑃𝑅)

2
  

Where FPR (False Positive Rate) represents the percentage of days with one or more false positive 

during the no leak scenario and the Detection Rate represents the percent of leak scenarios that 

successfully detected a leak, i.e. EWMA exceeded the EWMA threshold for one or more of the sensors 

within 48 hours of leak start. 

The grid-search optimization approach runs through a number of possible values for a and L calculating 

the Balanced Accuracy based on the 100 simulated leak scenarios and the non-leak scenario. The a and 

L values that maximize the Balance Accuracy performance indicator are then selected from this 

approach and the EPANET Leak Detection Calibration step is completed.  

Once the EPANET Leak Detection model is calibrated and the optimal EWMA threshold parameters are 

determined, the leak detection model can be used with live sensor data. As sensor data is uploaded, 

the EWMA value is calculated and compared with the EWMA threshold. If the EWMA value exceeds 

the threshold, the anomaly service associated with that sensor is updated. The specific steps are 

outlined below 

1. New Sensor data associated with the water distribution system (pressure or flow sensors 

currently) is updated. This triggers the leak detection service 

2. The leak detection service then calculates the residual of this data by comparing it to the no 

leak scenario hydraulic model simulation average and standard deviation for this time period 

and sensor. 

3. The residual is then used to calculate the EWMA, being weighted by previous values within 

the time series for that specific sensor based on the optimized parameters. 

4. If the EWMA exceeds the EWMA threshold a leak anomaly is triggered for that sensor. 

3.1.1.1 Results 

The EPANET Leak Detection Model was tested on an example EPANET network (no calibrated EPANET 

network was available from any of the case studies at the time of this report). The example EPANET 

network included 1004 nodes, 783 pipes, and 1 reservoir. Moreover, 2 flow and 5 pressure sensors 

were assumed to be installed throughout the network, with each sensor being associated with specific 

pipes and junctions within the EPANET file.  Sensors were modelled to record pressure/flow at 15 min 

increments throughout the day. Noise was added to the hydraulic model’s demands and simulated 

sensor readings.  
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The following simulations were performed to test the EPANET Anomaly Detection sub-model: 

1. No-leak Scenario was simulated for six months. The average reading (xavgi,t) and standard 

deviation (𝜎𝑖,𝑡) were calculated for each time step for each day of the week for each sensor.  

2. 100 leak scenarios (training dataset) were simulated to be used to calibrate the Leak Detection 

Model. Each leak scenario was simulated for 11 days, with the leak start time occurring 

randomly between day 2 and day 9.  

3. To test the effectiveness of the calibrated mode, a separate testing dataset was generated 

containing 1 six-month non-leak scenario and 100 test leak scenarios.  

To calibrate the EPANET Leak Detection model, an optimization grid search was performed that 

maximized the balanced accuracy based on the training scenarios. The optimization grid search 

attempted to optimize the EWMA parameters a, L using the following values: 

a = [0.2, 0.3, 0.4 … 0.9] 

L = [2, 2.2, 2.4 … 6] 

The grid search optimization determined that a = 0.8 and L = 4.5 maximized the balance accuracy. The 

Overall training accuracy had an average False Positive Rate of 0%, Leak Detection Rate (LDR) of 100% 

and an average detection time of 42 minutes (or three time steps).  

To test the accuracy the model the EWMA was then calculated for the hold-out testing datasets using 

the optimized EWMA parameters from the training set (a = 0.8, and L=4.5). A leak event was detected 

for all 100 leak scenarios, within 48 hours of the leak occurrence (LD = 100%) and only one day during 

the no-leak scenario was a leak triggered (i.e. false positive rate of 0.5%). The overall deterection time 

was 18min (or a single time step).  

Overall, these results indicate that with a well calibrated hydraulic model the EPANET Leak Detection 

algorithm is effective at identifying when a pipe burst is to occur. However, since the sensors within a 

water distribution network are often spread out, identifying where the pipe burst may be occurring 

can be difficult. The Leak Localization Model is developed to assist with this task, identifying the area 

where a pipe burst is likely to have occurred.  

3.1.2 EPANET Leak Location (ELL) 

Many localization models developed attempt to pinpoint the exact location of a pipe burst. However, 

utility staff are still required to search in-person to confirm the leak location. If the leak is not at the 

predicted location, staff are left wondering where to search next. Several clustering approaches have 

been developed to improve leak localization. However, these methods are based on dividing the WDS 

network in general search areas, and then training a model to predict which area the leak is likely to 

occur in. This approach can help utilities identify areas to search but having set areas also limits the 

flexibility of the model to identify the accurate location. The model developed for this project advances 



 

 

D4.2 Tools Prototypes and documentation 

16 

 

leak localization research by developing search area clusters using the leak node probability predicted 

from the machine learning (ML) model. 

3.1.2.1 Leak Localization Methodology 

Similar to the EPANET Anomaly Detection model, the EPANET Localization model uses a EPANET 

hydraulic model to calibrate the prediction model by developing a labelled training dataset. A ML 

model is then trained using this dataset, outputting the probability of the event occurring at each node 

within the network. A Maximum Coverage Location Problem (MCLP) is then solved to identify the 

optimal search area(s) that would contain the location of the event. The following section of this report 

details the methodology for each of these steps.  

Create a Labelled Dataset 

The first step in developing the EPANET Localization model is to create a labelled training dataset that 

contains the sensor reads during the event, as well as the node id that the event was simulated at. This 

training dataset will be used to train the machine learning model to predict the location of the event.  

To create an encompassing training dataset, six anomaly/pipe burst were simulated for every node 

within the EPANET network to study variations in pipe burst size and time of pipe burst. Pipe burst 

sizes were simulated by randomly selecting a low leak emitter (between 0.25-1) and randomly 

selecting a high leak emitter (between 1.5-3). Leak start times were randomly selected and pressure 

or flow readings at sensor locations were transformed into residuals using non-leak scenario averages 

and standard deviations (similar to EPANET Leak Detection model). A six-hour window of residuals are 

stored for each simulation, starting six hours before detection, and ending when the burst was 

identified. Note for testing purposes the leak detection time was randomly chosen to occur between 

1-4 hours after leak occurrence. 

Create a Machine Learning Model to Classify Anomaly Localization: 

A Machine learning classifier is created using the labelled training dataset. Each node represents a 

class, and the input variables are the residuals for each simulated sensor reading during the six-hour 

detection window. A Random Forest (RF) machine learning model was selected because of its high 

accuracy, ease of hyper parameter tuning, and robustness against data outliers (Breiman, 2001).  

With any machine learning classifier, the output is a probability score for each class (or in this case 

each node). The predicted probability for each node is then used by the Maximum Coverage Solution 

Problem to prioritize the search area(s). 

Maximum Coverage Location Problem 

To identify the optimal search areas for leak detection crews, the Maximum Coverage Location 

Problem (MCLP) is applied to the output from the machine learning classification model. Since the 

machine classification model outputs the predicted probability of the leak location occurring at each 
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node within the network, the MCLP can be used to group these results geographically (using the node’s 

GIS coordinates) and locate the search areas that maximizes the likelihood of containing the leak event.  

The MCLP algorithm adapted to leak localization is as follows: 

1. 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑧 =  ∑ 𝑎𝑖𝑦𝑖 ,𝑖∈𝐼  

2. 𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∶  𝑦𝑖 ≤  ∑ 𝑥𝑗,   𝑖 ∈ 𝐼𝑗∈𝑁i  

3. ∑ 𝑥𝑗 = 𝑝𝑗∈𝐽 , 

4. 0 ≤ 𝑦𝑖 ≤ 1  𝑖 ∈ 𝐼, 

5. 𝑥𝑗 ∈ {0,1} 𝑗 ∈ 𝐽. 

Where: 

𝑖, 𝐼 The index and set of EPANET nodes (i.e. possible anomaly locations) 

𝑗, 𝐽 The index and set of search area centroids 

𝑎𝑖  The predicted probability at node i 

𝑑𝑖,𝑗 The shortest distance from node i to search area centroid j 

S The search area radius 

𝑁𝑖  {𝑗|𝑑𝑖,𝑗 ≤ 𝑆} = the nodes j that are within a distance of S to node i 

p The number of search areas to be determined 

xj A binary variable that equals one when the search centroid is located at the jth node. 

yi A binary variable which equals one if node i is within one or more search areas 

(Church & Revelle, 1974). 

In order to solve the MCLP algorithm a list of possible search area centroid locations are required. To 

provide this a grid of possible search area centroids is created to cover the entire network by selecting 

the EPANET nodes with maximum and minimum latitudinal and longitudinal coordinates to create a 

grid boundary. A grid of possible search area centroids is then created within this boundary using a set 

distance between centroids. 

In addition to the grid spacing of each search area centroids, the search area radius and number of 

search areas must be provided to solve the MCLP.  Various grid spacing, search area radiuses, and 

number of search areas are compared and discussed in the following evaluation section. 

3.1.2.2 Leak Localization Results 

The evaluation of the leak localization model is performed in two parts. First the Random Forest 

classification model’s hyper parameters are tuned, and the accuracy of the model is calculated using 

an independent testing dataset. Second, after determining the effectiveness of the Random Forest 
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classification model, the MCLP approach and overall leak localization model is compared with other 

popular leak localization models. 

Random Forest Machine Learning Classification Model:    

Before assessing the effectiveness of the Random Forest machine learning model, the tree depth and 

number of trees hyperparameters are adjusted to optimize accuracy (i.e. the percentage of accurately 

predicted node locations containing the simulated leak). A grid search methodology was employed, 

and results were tested using a validation dataset which included leak scenarios for 100 randomly 

selected leak nodes. The tuning parameters assessed include: 

Tree depth: [100, 200, 300, 400, 500, 600] 

Number of trees: [25, 50, 100, 150m 200, 250, 300]. 

The results from this analysis suggest the optimal tuning parameters were a tree depth of 250 with 

300 number of decision trees developed.  

Using these tuning parameters, the leak location random forest model was trained. The accuracy of 

the model was assessed using an independent test dataset which included leak scenarios for 100 

randomly selected leak nodes. The overall accuracy of the Random Forest model on the independent 

test dataset was 7.5%, which is 75 times greater than random chance. However, this is still a relatively 

low accuracy which highlights the importance of using the MCLP approach to identify leak search areas 

that are more likely to contain the leak.  

Evaluation of Complete Leak Localization Model (and MCLP aglorithm): 

The complete leak localization model developed is compared with other leading localization 

approaches. Specifically, the Random Forest ML model with the MCLP approach detailed in this report 

was assessed using one search area (MCLP-1 SA) and two search area (MCLP – 2 SA) and compared 

with three other models: 

1. A classification random forest model (Classification - 1 SA) - where the node with the highest 

predicted probability being chosen as the centroid for the search area. A single search area is 

expanded out from this centroid until 50% of the leaks from the test dataset are within the 

search areas. 

2. A regression based random forest model (Regression -1 SA) - where the model predicts the 

latitude and longitude of the search area. A single circular search area is expanded outwards 

from the predicted latitude and longitude until 50% of the leaks from the test dataset are 

within the search areas. 

3. An agglomerative hierarchical clustering model (Clustering - 2 SA) – where a random forest 

model classification model is trained to predict probabilities of the leak occurring at each 

node for each simulation. Using this output, an agglomerative hierarchical clustering 

algorithm is performed using a max linkage parameter set to the desired search diameter. 

The search diameter is expanded until two clusters include 50% of the leaks from the test 

dataset.  
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Figure 2: Comparing Search Areas for Various Localization Methods 

Figure 2 identifies the geographical search area required by each model to accurately locate 50% of 

the simulated leaks within the test dataset. The results indicate that the Random Forest MCLP 

approach required the smallest single search area (35% less than leading regression-based model) and 

the smallest two search area (34% less than the clustering model). Overall, these results indicate the 

Leak localization model developed is very effective at reducing the search space required to locate the 

leak and outperforms the other leak localization models assessed.  

 

3.2 Subtask 4.2.2  
Water quality monitoring and anomaly detection  

This sub-task is directly linked to the functionalities and capabilities of the sensor in WP2, 

demonstrating the advanced and flexible capabilities of the sensor, combined with the types of 

systems, where LOTUS will be implemented. For the Water Distribution System (WDS) it will be 

combined with the sensor placement module developed in WP3 and currently in progress following 

the deployment of the LOTUS sensors in the network. 
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3.3 Subtask 4.2.3  
Real time mitigation measures for water quality alerts 

This sub-task includes the development of control strategy for online optimal disinfectant chemical 

dosage to ensure that disinfectant levels are high enough to minimize contaminant growth/ build-up, 

while not forming disinfectant by-products. For large-scale water distribution networks, the simulation 

and modelling tool available with IITB is tailored for Guwahati water distribution system and described 

below. Furthermore, the approach has been extended to optimize disinfectant dosage for intermittent 

water supply systems also. 

3.3.1 Coordinated Decentralization-based Optimization of 

Disinfectant Dosing in Large-scale Water Distribution 

Networks (CODD) 

Disinfectants are typically used in water distribution networks (WDNs) to maintain the microbiological 

quality of potable water throughout the network. Disinfectant residual levels in such large distribution 

networks need to be maintained within the prescribed bounds to address two major problems: (1) 

preventing microbial regrowth, and (2) minimizing harmful disinfection by-product (DBP) formation 

resulting from high levels of the disinfectant itself. These requirements pose a two-point constrained 

control problem of disinfectant residual levels for water quality risk mitigation measures. Another 

important aspect of consideration is that such WDNs exhibit spatial and temporal variations in water 

quality at different points in the network. Therefore, conventional systems engineering tools such as 

modeling, optimization, and control need to be adapted to accommodate these variations for water 

quality management in distribution networks. To this end, a novel zone control based approach to 

address the two-point quality control problem is developed. Further, to combat the spatial complexity, 

we combine the zone control approach with a decentralized optimization strategy, namely, the model 

coordination method, which has been widely proposed to solve large-scale optimization problems ( 

Vadera and Gudi, 2013). The algorithm and optimization problem along with results is briefly described 

next, details can be found in (Maheshwari et al. 2018). 

 

3.3.1.1 Model Coordination Method in the WDNs: Optimal Dosing 

Methodology 

Due to large scale of problem, several challenges have been encountered in the tasks of modelling, 

analyzing, identifying cause-effect relationship and implementing appropriate control algorithms and 

decisions for disinfectant dosage in centralized control of disinfection process in WDN. These 

challenges include (i) significant efforts required in the design of centralized control system and 
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communication overheads, as it consists of grouping information from all the parts of the system in 

order to create a centralize decision making structure, (ii) high dimensionality of variables in one single 

optimization problem is a difficulty for appropriate formulation and solution. This then requires choice 

of the most significant design variables, active design constraints and choice of the objective functions 

that reflects the needed design goal, and (iii) lack of robustness in case of failures in either the control 

or communication system.  These challenges necessitate the following steps in the development of the 

overall approach for optimization and real-time control of disinfectant dosage in WDN: 

a) Decomposition of the overall WDN into sub-systems using an appropriate partitioning 

approach  

b) Identifying the nature and extent of interaction between the sub-systems 

c) Accommodating the interactions into a formal optimization formulation at the local level with 

a view to converge on the global optimality in the decision making. 

 

Therefore, a three step strategy, where the techniques (principal components analysis (PCA), partial 

correlation analysis and effective relative gai array analysis (ERGA) respectively) were employed 

sequentially on the data (400 simulated values of chlorine residual concentration at all nodes) in the 

strategic manner to develop a partitioning strategy for decentralized control of water quality (chlorine 

residuals and DBPs) problem in large-scale distribution networks. The above three steps help in 

partitioning a large sized WDN into local sub-systems which could be better controlled /optimized 

(with minimal interaction) to optimality. For the problem at hand, the merit of disinfection through 

booster stations, at several points in WDN can be used for designing decentralized controllers to make 

these actuators (disinfectant dosage booster stations) work in coordinated fashion. And, this design of 

the control system structure (i.e., which of the available system inputs are to be used to control each 

of the system outputs) has to be taken care at the planning level while defining the optimization 

problem. 

 

Furthermore, in general, optimizing a single sub-system from a large system without taking effect of 

interactions from other sub-systems may lead to a solution which is not optimal for the entire system. 

However, if sub-systems are coupled through co-ordinating variables or parameters in a hierarchical 

manner as in model co-ordination, an overall optimal solution can be achieved. This type of 

decomposition is advantageous when first level sub-systems have certain independent variables and 

they are interacting with the second level only through common coordinating variables. Model co-

ordination divides the optimization problem into two levels, namely lower level, and higher level. The 

partition is achieved such that coordinating variables of first level sub problems are free to be 

manipulated by the controller at the second level. The second level controller chooses coordinating 

variables such that all independent sub-systems in the first level take the system to overall optima 

corresponding to the chosen coordinating variable. Model co-ordination is directly applicable when 

the objective function of the integrated optimization problem is in additively separable form. Apart 

from the lower computational effort, it also improves the numerical performance of the optimizer, 

making it achieve the optimal solution in lesser iterations than an integrated optimization approach. 



 

 

D4.2 Tools Prototypes and documentation 

22 

 

The block diagram and optimization formulation of the two level decomposition, model co-ordination 

method, using co-ordination links resulted from partial correlation analysis for example network, is 

shown below in the Figure 3-1, and results also summarized in Figure 3-2. 

 
 

 
Figure 3-3: Block Diagram of Co-ordinated Decentralized Disinfectant Dosage Methodology 

 
To start the algorithm, choose an initial guess value of coordinating variables as U1= U1° and U3= U3°. 

The algorithm proceeds in an iterative manner until the optimal solution of all sub problems at first 

level also corresponds to the optimized solution at the second level. It can be seen that in every sub-

problem j, yji is a function of coordinating variables and local variable (U1, U3, Uj), reflecting the cause 

and effect relationship in WDN. This method is known as Model co-ordination because it modifies the 

mathematical model by adding one more equation of fixing coordinating variable at second level as C= 

C° in every iteration. 

 

where,  iy  and ,i THMY   = f (U). 

            iy  = chlorine concentration at ith nodal point (mg/L) 

            nd   = total number of nodes in the network 

            ly  = lower bound on chlorine concentration (mg/L) 

            uy  = upper bound on chlorine concentration (mg/L) 
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            ,i THMY = THM concentration at ith node in each cluster (µg/L) 

            
maxTHM  = max. concentration limit on THM concentration (80 µg/L) 

            
jU  = disinfectant dosing concentration at jth booster station (mg/L) 

            U = Total disinfectant dosage vector [U1, U2, U3, U4, U5] T 

 
In terms of actual functionality, the above algorithm achieves regulation of chlorine levels within 
bounds as prescribed by drinking water standards; these bounds themselves reflect the need to ensure 
residual chlorine levels above a threshold to ensure dsinfection for preventing microbial (re)growth 
and below a maximum threshold that guards aginst formatin of harmful DBPs. 
 
As an example, in the following network chlorine dosage levels were arrived at in an optimal manner 
to regulate chlorine levels within thresholds (0.2-2 mg/L) by coordination of disinfectant dosage at 5 
booster stations (U1-U5) during sudden microbial contamination event as indicated in the Figure 3-2. 

  
Figure 3-4: Results of Implementation of Algorithm on an Example Water Distribution Network of EPANET, (a) for nodes in 
cluster 1, (b) for nodes in cluster 3 
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4 Tanker-based Water Distribution 

Systems 

4.1 Subtask 4.2.4 
Management of tanker-based distribution systems 

In this sub-task, solutions have been developed for the real-time monitoring and management of 

tanker-based distribution systems based on the LOTUS sensor. This includes, on the hardware level, 

the operation of the on-tanker disinfecting system, and on the system level the logistic optimization 

tool in adaption to the varying consumer demands. A brief description of the developed systems 

planning and optimization frameworks is provided in the next sections.  

4.1.1 A Short-term Planning Framework for the Operation of Tanker 

-based Water Distribution System in Urban Areas 

To efficiently operate tanker service systems, a large fleet of tanker trucks are required to transport 

water among several water sources, water treatment plants and consumers spanning across the 

regions. As shown in Figure 4-1, this requires tight coordination between water suppliers, treatment 

plant operations, and user groups to use available water resources in a sustainable manner, along with 

the assurance of water quality and timely delivery. This work proposes a novel formulation to assist 

decision-making for optimizing tanker-based water distribution systems and treatment operations, 

with an overall objective of minimizing the total operating cost such that all of the constraints related 

to the water demand, supply operations, and environmental and social aspects are honored while 

supplying water to a maximum number of users.  

 

Figure 4-1: Problem Description of Tanker-based Water Distribution System 



 

 

D4.2 Tools Prototypes and documentation 

25 

 

The problem is formulated and solved as a mixed integer linear programming (MILP) optimization 

framework and captures all of the nuances related to (i) water availability limitations and quality 

constraints from different sources, (ii) maintaining water quality as it transports via tankers, (iii) water 

demands for various end-use purposes, and (iv) transportation across a water supply chain. The 

proposed novel framework is applied to a realistic urban model to find the optimal tanker delivery 

schedule, ensuring appropriate treatment and timely delivery of water. The results of the case study 

conducted on a representative-scale problem also elucidate several aspects of treatment plant 

operation and consumer demand fulfillment for the efficient planning and management of tanker-

based water distribution systems. A pictorial summary of the optimization model is shown in Figure 4-

2 and mathematical details can be refeered to (Maheshwari et al., 2020). 

 

Figure 4-2: Optimization Formulation Design of a Tanker-based Water Distribution System 

 

Furthermore, the efficacy of the proposed MILP optimization framework towards handling the 

peculiarities of planning and management of tanker based water supply system, is demonstrated here 

through the application on a representative case study. This case study is based on the practical 

insights about typical tanker water supply system operations from Just Paani Water Supply Solutions. 

Such enterprises that operate tanker water supply typically manage a network of tanker water vendors 

in different areas of the city. These vendors supply water either from ground water or fresh water 

sources in different capacity tankers. The consumers and vendors are mapped with each other by the 
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enterprise company based on (i) the customer demand (quantity and time slot) data, (ii) delivery 

locations and (iii) availability of water tankers with several vendors, in the network across the city. 

However, in the present situation, due to the lack of any planning and scheduling framework for real-

time operation of the tanker water supply system, the suppliers face challenges of untimely water 

delivery and water quality monitoring issues.  

The results of framework are demonstrated to assist decision makers on various aspects of tanker 

water supply system operation to ensure quality water and fulfillment of all costumers demands, in 

the required turnaround times. Also, a typical scenario of a maintenance period for the treatment 

facility is simulated to present the ability of proposed formulation in assisting towards optimal 

decisions. The case study considers two fresh water sources (FW2, FW3), three groundwater sources 

(GW1, GW3, GW4) and two water treatment plants (TF1, TF2) to serve the water demands of the city 

as shown in Figure 4-3. Based on the location of these sources and consumers, the entire city is divided 

into three regions (R1, R2, and R3) having a different combination of water sources and treatment 

plants as depicted by Figure 4-3. And, consumers in each region are clustered in three types, namely, 

household consumers (HHC), commercial consumers (CC), and hospital and health care institutions 

(HC). The raw water from all the groundwater sources is first transported to either of the treatment 

facilities in region R1 and R2 and then treated water is delivered to consumers in different locations. 

To transport water in different sections, this case study considers tankers in two capacities 6000 L (6T) 

and 10,000 L (10T) for raw water whereas, treated water is supplied using tankers of three capacities 

(3000 L, 6000 L and 10,000 L).  

The results in Figure 4-4 demonstrate the framework catering the demands of multiple consumers in 

an optimal manner in different regions from each water source. Further to understand the water 

supply service to each consumer type, Figure 4-5 shows the demand fulfilment pattern of DPW product 

for consumer CC1, in both morning time periods. This figure shows that in situations of increased water 

demands which cannot be fulfilled by the sources present in that region, the supply is planned so as to 

be met by sources of another region in an optimal manner. Taken together, these results highlights 

the framework’s feature where a consumer is serviced by multiple sources depending on the quantity 

of water demand, demand timings, and tanker availability in the region. Furthermore, Figure 4-6 

depicts that according to the water demand quantity in different time periods, tankers of various 

capacities are selected to supply water at minimum transportation cost. Thus, the framework provides 

a detailed understanding of questions such as how much quantity of water to be delivered from 

different suitable sources to a consumer by optimally utilizing multiple tanker capacities. Lastly, Figure 

4-7 shows the percentage distribution of various cost components in the objective function. 
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Figure 4-3: Description of Components in the Application Case Study 

 

 

 

Figure 4-4: : Each Water Source Catering to Multiple Consumers 
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Figure 4-5: Daily Demand fulfilment pattern of CC1 Consumer in Morning period 

 

 

Figure 4-6: Source-Consumer-Truck association for demand fulfilment of CC2 
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Figure 4-7:Percentage distribution of cost components in objective function corresponding to optimal solution 

 

 

Figure 4-8:Optimal Schedule of Water Treatment Facilities operation 
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4.1.2 Stochastic Optimization Model for Short-term Planning of 

Tanker Water Supply Systems in Urban Areas 

Accounting for the uncertain nature of customer demands while making the planning decisions not 

only aids in achieving minimum operational cost but is also important in reducing the water wastage. 

Herein, we developed a two-stage stochastic recourse programming model for an optimal planning 

and scheduling of tanker water supply system under daily demand uncertainty. The main objective is 

to supply water to maximum number of consumers with minimum total operating costs. A solution 

strategy combining Sample Average Approximation (SAA) and Monte-Carlo Simulation (MCS) methods, 

to generate an equivalent deterministic MILP (mixed integer programming problem) model with 

multiple scenarios of demand uncertainty realization, is adopted for problem solving. The proposed 

model is applied to an example tanker water supply system and the benefits of two-stage stochastic 

modelling in making agile decisions incorporating the effect of uncertainties are illustrated. The figure 

4-10, below describes the overall optimization model in the tool and details can be refereed to 

(Maheshwari et al. 2022). 

 

The developed stochastic MILP optimization model is demonstrated herein through an example 

system where water supply in urban area is divided into two regions (R1, R2). As shown in Figure 4-9, 

this system consists of one water source (GW/Surface water (FW)), one treatment facility and three 

Figure 4-9:Schematic of Stochastic Demand Planning in Tanker Water Supply System 
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type of consumer clusters in each region, viz. Households (HHC), Commercial (CC) and Hospitals (HC) 

having different water quality demands (DPW/ UPDW). Furthermore, two type of tanker capacities are 

considered, 6 kL and 10 kL to supply water from sources to treatment facilities and consumers and the 

total number of available tankers of each type is provided region-wise. The results of total operating 

cost, demand shortfall penalty costs and extra tankers hired in the objective function for stochastic 

problem with recourse (SPR) solution are shown in Figure 4-10. Furthermore, the value of stochastic 

solution (VSS), i.e. advantage of performing stochastic optimization over deterministic model with 

mean value is shown using a quantitative metric (Birge and Louveaux, 2011) calculated as shown in 

Equation 1. To calculate VSS, we fix the first stage solutions to the deterministic model optimal 

solutions and compared the model performance by solving each stage two problem separately. An 

expected total operating cost of 1.11 e+07 is obtained. This is also known as expected value solution 

(EVS) in the literature. As expected, this EVS is 13% higher than SPR solution for the example case study 

with the developed stochastic model in this paper. This is because the model in this first stage fixed 

case is oblivious of the high demand scenario and therefore hires the extra tanker capacity to be just 

enough to satisfy mean demand values. This led to high penalty costs on demand shortfall scenarios 

and consequently higher objective function value in EVS solution as also shown in results comparison 

in Fig. 4-10. 

VSS= (SPR-EVS)/EVS                                                        (1) 

 

 

Figure 4-10:Comparison of stochastic solution (SPR) with expected value solution (EVS) 
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5 Irrigation Systems 

5.1 Subtask 4.2.5 
Real-time optimal operation of irrigation systems regarding quantity and quality of water 

In this sub-task, a solution will be developed for the optimal use of the available sources of water for 

irrigation in order to provide a continuous flow of water with the right amount of fertilizer. As a first 

step, the optimal usage of water and pumping energy for the growth of the crops was studied. Optimal 

irrigation can not only help plants to stay healthy but can also help to minimize the usage of water 

which is a valuable resource. An illustration of the approach can be found in Figure 5.1. Model-

predictive control was chosen as the control strategy for the control of the amount of irrigation 

because it can integrate the weather forecast  to obtain the optimal amount of irrigation water to 

achieve the optimum plant growth.  

 

Figure 5-1: Illustration of plant health and water usage. 

5.1.1 Model building  

For the implementation of the model-predictive control scheme, a model that represents the evolution 

of the moisture content of the soil is required. The biosphere model 2 [1] is used for this purpose. The 

model equations are given below:  

𝑑𝜃1

𝑑𝑡
=

1

𝐷1
[𝑃𝑡 + 𝐼𝑟𝑟 −  𝑄1,2 −  𝐸𝑔], 

𝑑𝜃2

𝑑𝑡
=

1

𝐷2
[𝑄1,2 −  𝑄2,3 −  𝐸𝑡𝑟], 
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𝑑𝜃3

𝑑𝑡
=

1 

𝐷3
[𝑄2,3 −  𝑄3], 

 

where  𝜃1, 𝜃2, 𝜃3  denote the moisture content of the top layer of the soil, of the root zone layer and 

of the deep layer of the soil with the associated depths 𝐷1, 𝐷2, 𝐷3.  𝑃𝑡  denotes precipitation, 𝐼𝑟𝑟  

denotes irrigation, 𝑄𝑎,𝑏 denotes the flow of water from layer 𝑎 to layer 𝑏, 𝐸𝑔  denotes the evaporation 

of water from the surface of the soil,  𝐸𝑡𝑟 denotes the transpiration of water from the plant.   

Evapotranspiration is a combined term used for evaporation and transpiration. It refers to the amount 

of water transferred into the atmosphere, collectively from the soil surface and the plant or crop, 

during a certain duration of time. To represent the reality with reasonable accuracy, the estimation of 

evapotranspiration is vital. There are a number of factors that affect the amount of evapotranspiration: 

weather conditions, crop type and the stage of growth, soil factors, and other factors. We employ the 

methodology given in [2] to estimate the evaporation from the weather prediction data and employ 

MPC control.  

5.1.1.1 Controller design for irrigation  

The design of the control scheme for the irrigation of a field can be seen in Figure 5.2, where the 

constraints and objective function are derived from the desired plant growth targets. The model of the 

controller uses the weather forecast data to predict the required irrigation for the next two weeks. 

The value for the first predicted day is applied to the field, which is also influenced by the actual 

weather. The soil moisture is measured in the field to know its current value in the root zone layer. To 

achieve the control goal, a nonlinear model-predictive control scheme was designed using do-mpc, an 

open-source python library for the development of model predictive control applications created by 

TU Dortmund (www.do-mpc.com). It uses the open-source tools CasADi (https://web.casadi.org/) and 

Ipopt (https://coin-or.github.io/Ipopt/) for solving the optimization problems.   
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Figure 5-2: Control loop for irrigation. 

5.1.1.2 Simulation study  

The control goal is to keep the moisture content of the root zone layer at 0.2 units under varying 

weather conditions. Only a measurement of the moisture in the root zone layer was assumed to be 

available. An extended Kalman filter is used to estimate the states. The sampling time of the MPC 

controller is 1 day with a prediction horizon of 14 days. For conducting a realistic simulations study, 

weather data of the Jalgaon region of India is used.   

The results of the simulation study are presented in Figure 5.4. It can be seen that the reference is 

tracked accurately until 200 days beyond which point in time the moisture is more than necessary. 

This is because of the monsoon season where the precipitation is much higher compared to the other 

time of the year. It can be seen that the irrigation is switched off to 0 during this period which is the 

best the controller can do.  

In addition to the simulation study with the estimator, a simulation study in the presence of different 

soil types in the same agricultural field was performed assuming full-state information.  Three types of 

soil are considered: clay loam, clay and sandy loam. The distribution of the soil in the field can be seen 

in Figure 5.3. The results of the simulation study can be seen in Figure 5.5. It can be seen that in the 

first 200 days, the soil moisture content of the different soil types can be kept close to the reference 

with a single irrigation strategy. 
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Figure 5-3: Distribution of the soil type considered in the simulation study. 

 

 

 

Figure 5-4: Simulation results obtained by applying the model-predictive control scheme for the irrigation use case estimating 
the states using the extended Kalman filter. 
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Figure 5-5: Simulation results obtained by applying the model-predictive control scheme for the irrigation use case for the field 
with three different soil types controlled using a single control input. 

5.1.1.3 Current focus  

Currently, the objective of the controller is chosen to minimize the irrigation water achieving the 

bound on the moisture level. This will be followed by the optimization of the growth of the crops and 

the optimization of fertigation strategies. The conrollers will be implemented using the LOTUS sensor 

together with commercially available sensors. 
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6 Wastewater Treatment 

6.1 Subtask 4.2.6 
Two types of wastewater systems were studied: an algae-based wastewater treatment process and an 

activated sludge treatment process.  

6.1.1 Activated Sludge Treatment Process  

The activated sludge treatment process is a conventional water treatment that is used widely across 

the planet and also, mainly in the context of municipal wastewater treatment in various cities across 

India. One of the critical challenges in such treatment plants is to maintain the effluent water quality 

under various uncertainties, especially strongly varying inflows, and to minimize the consumption of 

electric power.  Advanced control methodologies such as model predictive control (MPC) can reduce 

the power consumption and greatly improve the effluent water quality that is released into the 

freshwater streams because of its ability to predict the future behavior of the systems using the models 

while respecting the constraints. MPC based on state-space models (as opposed to conventional input-

output-based MPC schemes) can be especially beneficial because it can help in controlling the inner 

states of the plant that are not measured explicitly. For the successful application of a state-space-

model-based MPC scheme, three aspects are necessary: a model that reasonably represents the 

reality, a software tool that reliably solves optimization problems online, and reliable measurements 

of critical states of the system.   

A reliable sensor is necessary to accurately estimate the various parameters of the model and to 

provide online measurement information of critical states. The LOTUS sensor is especially beneficial 

because it can measure various states at the same time while being cost-effective. Without the 

presence of the measurement information, MPC cannot operate the plant optimally to achieve the 

desired goals. In the following, the critical steps involved in the development of the online computation 

tool for efficient control are presented. 

The activated sludge treatment process has have been studied for more than a century and detailed 

benchmark models are available. Benchmark simulation model No.1 is used here along with its 

parameters for the simulation study using the model predictive control framework. The benchmark 

model can be adapted to the local plant conditions by conducting experiments to adapt the 

parameters to the specific situation. LOTUS sensors together with commercially available sensors can 

be used to provide the data which is needed to estimate the parameters to a reasonable accuracy. The 

simulation studies have been performed for the original parameters provided in the benchmark model 

to test the applicability of the nonlinear MPC framework for this application.   
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Figure 6-1: Illusration of the activated sludge process 

The illustration of the process can be seen in Figure 6.1. It consists of five tanks with two sections: an 

anoxic section and an aerobic section. Each tank is represented by eight basic biochemical processes 

using 13 state variables. Note that the resulting model is nonlinear because the Monod equations are 

used to model the growth (as well as the decay) of both autotrophic and heterotrophic bacteria.  The 

settler is modeled as a 10 layer non-reactive unit. This results in a total of 195 states to model the 

whole plant (more details can be found in [1]). 

 Control goals  

As shown in Figure 6.1,  there are two control loops the goals of which are to keep the nitrate and 

nitrite nitogen concentration  at  1 g N/m3  in Tank 2 and dissolved oxygen concentration at 2 mg -

COD/l in tank 5. To achieve these goals, a nonlinear model predictive control scheme was designed 

using do-mpc, an open-source python library for the development of model predictive control 

applications created by TU Dortmund (www.do-mpc.com). It uses the open-source tools CasADi 

(https://web.casadi.org/) and Ipopt (https://coin-or.github.io/Ipopt/) for solving optimization 

problems.   

Simulation study under perfect information  

Initially, full-state information was assumed to validate the performance of the controller. A sampling 

time of 15 minutes was chosen with a prediction horizon of 1 hour. The simulation is carried out for at 

first for one day of constant influent conditions followed by a realistic but challenging influent 

condition representing rainy weather. The dynamic influent conditions for 14 days are given in the plot 

below. The dynamic variations of the influent conditions can be clearly seen. 



 

 

D4.2 Tools Prototypes and documentation 

40 

 

 

Figure 6-2: : Influent trajectories of flow rate, slowly biodegradable substrate (Xs), ammonia and ammonium nitrogen (Snh), 
soluble biodegradable organic nitrogen (Snd) for 14 days used for the simulation studies. 

The optimization problem is formulated with a quadratic stage cost to track the concentration of 𝑆𝑁𝑂 

in the reactor 2 and 𝐷𝑂 in reactor 5 and is given by (𝑆𝑁𝑂(2) − 1)2 + (𝐷𝑂(5) − 2)2. The simulation 

results are given below.  
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Figure 6-3: The closed-loop trajectories of  nitrate and nitrite nitrogen concentration are reactor 2 𝑆𝑁𝑂, dissolved oxygen  in 
reactor 5 𝐷𝑂, the internal recirculation flow rate  𝑄𝑎 and oxygen transfer rate in reactor 5 𝐾𝐿a  obtained by applying the 
model-predictive controller (on the left). The resulting trajectories of effluents BOD, COD, ammonium and ammonia nitrogen 
(𝑆𝑁𝐻), total nitrogen (on the right). 

From Figure 6.3 (left), it can be seen that the controller tracks the reference values of  𝑆𝑁𝑂 and 𝐷𝑂 

perfectly under constant influent conditions and very well in the presence of dynamic variations of the 

influents. The manipulated variables  (internal recirculation flow) and oxygen transfer rate are also 

shown. On the right of Figure 6.3, the effluent trajectories are shown with the required bounds shown 

in red-dashed lines. It can be seen that the effluents satisfy the required bounds at all time steps. Based 

on the variations in the influent conditions, the controller efficiently manipulates the control inputs to 

achieve the desired reference values and this results in the satisfaction of the constraints on the 

effluent trajectories at all time. The controller was also validated for dry weather and stormy weather 

conditions, where a similar performance of the controller was observed.   

6.1.1.1 Benefits of the LOTUS sensor 

In reality, not all state measurements are available. However, measurement information is crucial to 

estimate the current state of the system that can be then used in closed-loop control. Another set of 

simulation studies was performed by assuming that certain states are measured can either by using 

the LOTUS sensor or by using other commercially available sensors. The concentrations of dissolved 

oxygen, nitrate and nitrite nitrogen, ammonium and ammonia nitrogen, and alkalinity are assumed to 

be measured in all tanks. The measurement frequency is assumed to be 1 minute with a normally 
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distributed measurement noise with a standard deviation of 0.1. The initial conditions are assumed to 

be uncertain by 20% in the state estimates. The states are estimated using an extended Kalman filter 

that combines both the model information and the measurement information at every time step to 

estimate the inner states of the system.  

The simulation results can be seen in Figure 6.5. It can be seen that the plant trajectories track the 

references well and the results are very close to the full-state information case.  Also, the effluent 

trajectories satisfy the required constraints at all times and the trajectories are similar to the full-state 

information case shown in Figure 6.4. This clearly shows the advantages that the LOTUS sensor can 

bring to the closed-loop control to achieve the desired results and not all states are required to be 

measured. 

 

Figure 6-4: The closed-loop trajectories of  nitrate and nitrite nitrogen concentration are reactor 2 𝑆𝑁𝑂, dissolved oxygen  in 
reactor 5 𝐷𝑂, the internal recirculation flow rate  𝑄𝑎 and oxygen transfer rate in reactor 5 𝐾𝐿a  obtained by applying the 
model predictive controller by measuring only certain states (on the left). The resulting trajectories of effluents BOD, COD, 
ammonium and ammonia Nitrogen (𝑆𝑁𝐻), total nitrogen (on the right). 

 

Current focus  

Currently, we are focussing on taking into account the uncertainty of the model that will be handled 

using the multi-stage NMPC scheme together with an economic objective to optimize energy usage.   
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6.1.2 Algae-based wastewater treatment  

The algae-based wastewater treatment plant under construction at NEERI in Chennai is planned to be 

operated as a batch process, where the nutrients in the wastewater are used by the algae to increase 

their biomass. The control goal here is to maintain the desired pH level which is optimal for algae 

growth under various lighting and temperature conditions. As in conventional wastewater treatment, 

the measurement information from the LOTUS sensor together with commercially available sensors 

can help significantly in achieving this goal.   

Model building  

The algae growth depends on the local environmental conditions and varies across the globe.  Hence 

a general benchmark formulation that can work in all conditions is difficult to obtain. However, various 

studies on such treatment processes are available. We investigated three such cases: the modified 

river water quality model as presented in [2], kinetic modeling for algae cultivation [3], and the algae-

bacteria growth (ALBA) model in raceway the ponds [4].  In addition,  a simple model based on first 

principles and nutrient availability are also developed. After thorough investigation, the model given 

in [2] will not be useful for the use case that we are investigating. Both [3] and [4] have the potential 

to model the plant that will be built at NEERI, Chennai. Model [4] is more detailed and consists of 

various interactions between bacteria and algae in open raceway ponds. The effects of light, 

temperature and pH are studied to aid algae growth.  

Since the race way pond is planned to be implemented as a batch process, different manipulations to 

control the algae growth are investigated. For maintaining a suitable pH levels at the tank, weak acids 

as well as salts are considered to be the two control inputs that will be added to the tank at a 

reasonable interval. The frequency of manipulation is still under investigation. Rather than tracking  a 

particular pH level, the upper and lower bounds for pH can be formulated and the bounds can be met 

using the model predictive control framework. 

 Secondly, during peak summer, the temperature of Chennai can reach as high as 42°C consistently. 

Though locally grown algae can withstand such temperature for a certain amount of time, prolonged 

exposure to heat can result in faster decay rate of algae leading to poor nutrient removal. Since, no 

manipulations are available for temperature control, a semi-batch type process is studied where in 

nutrient feed-rate can be a control input. Since the influents can be stored away from the sun, feeding 

additional nutrients can aid algae growth in addition to reducing the temperature of the raceway pond. 

In addition, it is also expected to provide a better penetration of light that can aid algae growth 

compared to a pure batch process (under the assumption that the turbidity of the wastewater is lower 

than that of raceway pond which also includes algal biomass). 
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6.1.2.1 Benefits of the LOTUS sensor  

As in the case of a conventional wastewater treatment system, simulation studies were carried out to 

study the benefits of the sensor information. It was observed that by measuring the concentrations of 

the critical nutrients, all the inner states of the model can be estimated with reasonable accuracy. This 

can then be used to improve the growth of algae species quickly based on the available weather 

forecast. For example, in the kinetic model in [3], all the states can be estimated by measuring 

concentrations of  phosphate, carbon and nitrates. Similarly, all 17 states of the ALBA model can be 

estimated just by measuring inorgonic carbon, phosphorus, ammonium and ammonia nitrogen, 

nitrates, and dissolved oxygen which can either be measured using the LOTUS sensor or commercially 

available sensors.  

6.1.2.2 Current focus  

Currently, the results of the estimation and control of the system are investigated with the goal to be 

adapted to user needs. The uncertainties in the plant model are studied to achieve required robustness 

against the uncertainties in the real plant. Model predictive control will be implemented with the goal 

of maximizing algae growth rate. In addition to achieving required effluent purity, the strategies to 

increase the bio-fuel yield will be investigated and the results will be documented. 
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